Tag |
Content |
CGDB ID |
CGD-RaN-022186 |
Uniprot Accession |
Q9Z301; Q9Z301; PER2_RAT
|
Protein Name |
Period circadian protein homolog 2 |
Gene Name |
Per2 |
Ensembl Information |
ENSRNOT00000027506; ENSRNOP000000275 |
Genbank Protein ID |
NP_113866.1; XP_006245538.1; XP_006245539.1 |
Genbank Nucleotide ID |
NM_031678.1; XM_006245476.2; XM_006245477.2 |
EMBL (Genbank) ID |
BAA34187.1 |
Organism |
Rattus norvegicus |
NCBI Taxa ID |
10116 |
Circadian Information
|
Evidence |
Phase |
Amplitude (FOLD) |
Sentence |
Tissue/Cell |
Data type |
PMID |
Peak |
Trough |
External condition |
High-throughput |
ZT 18 |
ZT 6 |
LD |
11.26 |
Genes involved in the metabolism and transport of endogenous compounds, xenobiotics, and therapeutic drugs, along with genes that are biomarkers or potential therapeutic targets for many lung diseases, exhibited 24-h cyclic oscillations, suggesting an important role for such rhythms in regulating various aspects of the physiology and pathophysiology of lung. |
lung |
Microarray |
[1] |
Small-scale |
ZT 12 |
ZT 20 |
LD |
3.92 |
The mRNA level of Per2 is under circadian control in SCN of rats. |
SCN |
Small-scale |
[1] |
Small-scale |
CT 12 |
CT 8 |
DD17 |
4.35 |
The mRNA level of Per2 is under circadian control in colon of rats. |
colon |
Small-scale |
[1] |
Small-scale |
CT 16 |
CT 4 |
DD17 |
5.00 |
The mRNA level of Per2 is under circadian control in liver of rats. |
liver |
Small-scale |
[1] |
Small-scale |
ZT 18 |
ZT 2 |
LD |
6.38 |
The mRNA level of Per2 is under circadian control in AV3V of rats. |
AV3V |
Small-scale |
[1] |
Small-scale |
ZT 14 |
ZT 2 |
LD |
2.05 |
The mRNA level of Per2 is under circadian control in area postrema of rats. |
area postrema |
Small-scale |
[1] |
Small-scale |
ZT 10 |
ZT 6 |
LD |
2.00 |
The mRNA level of Per2 is under circadian control in caudal ventrolateral medulla of rats. |
caudal ventrolateral medulla |
Small-scale |
[1] |
Small-scale |
ZT 14 |
ZT 2 |
LD |
3.29 |
The mRNA level of Per2 is under circadian control in dorsal vagal motor nucleus of rats. |
dorsal vagal motor nucleus |
Small-scale |
[1] |
Small-scale |
ZT 2 |
ZT 14 |
LD |
1.80 |
The mRNA level of Per2 is under circadian control in dorsomedial nucleus of rats. |
dorsomedial nucleus |
Small-scale |
[1] |
Small-scale |
ZT 14 |
ZT 6 |
LD |
2.07 |
The mRNA level of Per2 is under circadian control in nucleus ambiguus of rats. |
nucleus ambiguus |
Small-scale |
[1] |
Small-scale |
ZT 14 |
ZT 6 |
LD |
2.63 |
The mRNA level of Per2 is under circadian control in paraventricular nucleus of rats. |
paraventricular nucleus |
Small-scale |
[1] |
Small-scale |
ZT 18 |
ZT 6 |
LD |
10.00 |
The expression of Per2 oscillates in a circadian manner in pineal glands of rat. |
pineal glands |
Small-scale |
[1] |
Small-scale |
ZT 16 |
ZT 3 |
LD |
57.00 |
Cosinor analysis confirmed previously documented rhythmicity in expression of Clock, Bmal1, ReverbA,ReverbB,Per1, and Per and demonstrated that rhythmicity for all measured clock genes fit a 27-h periodicity in intestinal jejunal mucosa of rats. |
intestinal jejunal mucosa |
Small-scale |
[1] |
Small-scale |
ZT 16 |
ZT 4 |
LD |
>5 |
N-nitroso-N-methylurea significantly reduced the circadian expression of Per2 gene in the mammary gland of rats. |
mammary gland (pubescent female F344 rats) |
Small-scale |
[1] |
Small-scale |
ZT 16 |
ZT 4 |
LD |
9.00 |
Pertranscription factors Per1, Per2, and Per3 peaked during the early dark period in abdominal adipose tissue of rats. |
abdominal adipose tissue |
Small-scale |
[1] |
Small-scale |
ZT 8 |
ZT 20 |
LD |
2.00 |
The mRNA level of PER2 is under circadian control in SCN of Sprague-Dawley rats. |
SCN |
Small-scale |
[1] |
Small-scale |
ZT 16 |
ZT 4 |
LD |
14.00 |
The mRNA level of PER2 is under circadian control in basolateral nucleus of the amygdala of Sprague-Dawley rats. |
basolateral nucleus of the amygdala |
Small-scale |
[1] |
Small-scale |
ZT 4 |
ZT 16 |
LD |
5.50 |
The mRNA level of PER2 is under circadian control in entral nucleus of the amygdala of Sprague-Dawley rats. |
entral nucleus of the amygdala |
Small-scale |
[1] |
Small-scale |
ZT 4 |
ZT 16 |
LD |
15.00 |
The mRNA level of PER2 is under circadian control in hippocampus of Sprague-Dawley rats. |
hippocampus |
Small-scale |
[1] |
Small-scale |
ZT 4 |
ZT 16 |
LD |
8.00 |
The mRNA level of PER2 is under circadian control in nucleus accumbens cores of Sprague-Dawley rats. |
nucleus accumbens core |
Small-scale |
[1] |
Small-scale |
ZT 0 |
ZT 12 |
LD |
7.00 |
The mRNA level of PER2 is under circadian control in nucleus accumbens shell of Sprague-Dawley rats. |
nucleus accumbens shell |
Small-scale |
[1] |
Small-scale |
ZT 8 |
ZT 20 |
LD |
4.00 |
The mRNA level of PER2 is under circadian control in prefrontal cortex of Sprague-Dawley rats. |
prefrontal cortex |
Small-scale |
[1] |
Small-scale |
ZT 14 |
ZT 2 |
LD |
5.70 |
In control rats, the daily profile of per2 expression in the heart of rats showed a significant rhythm with maximum values at the beginning of the dark phase. |
heart |
Small-scale |
[1] |
Small-scale |
ZT 14 |
ZT 2 |
LD |
8.50 |
The daily profile of per2 expression in the liver of control rats showed a distinct daily rhythm with peak levels at the beginning of the dark phase of 24-h cycle. |
liver |
Small-scale |
[1] |
Small-scale |
ZT 12 |
ZT 20 |
LD |
2.00 |
There were significant rhythms of Per1, Per2, and Bmal1 in the SCN, prefrontal cortex, insula, paraventricular nucleus, subregions of the hippocampus, and amygdala with a 24-h period, suggesting the importance of oscillating molecular clock in extra-SCN brain regions. |
SCN |
Small-scale |
[1] |
Small-scale |
ZT 12 |
ZT 8 |
LD |
2.50 |
There were significant rhythms of Per1, Per2, and Bmal1 in the SCN, prefrontal cortex, insula, paraventricular nucleus, subregions of the hippocampus, and amygdala with a 24-h period, suggesting the importance of oscillating molecular clock in extra-SCN brain regions. |
PVN |
Small-scale |
[1] |
Small-scale |
ZT 16 |
ZT 4 |
LD |
2.00 |
There were significant rhythms of Per1, Per2, and Bmal1 in the SCN, prefrontal cortex, insula, paraventricular nucleus, subregions of the hippocampus, and amygdala with a 24-h period, suggesting the importance of oscillating molecular clock in extra-SCN brain regions. |
anterior cingulate |
Small-scale |
[1] |
Small-scale |
ZT 16 |
ZT 4 |
LD |
2.00 |
There were significant rhythms of Per1, Per2, and Bmal1 in the SCN, prefrontal cortex, insula, paraventricular nucleus, subregions of the hippocampus, and amygdala with a 24-h period, suggesting the importance of oscillating molecular clock in extra-SCN brain regions. |
rostral agranular insula |
Small-scale |
[1] |
|
Description | Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots ''circa'' (about) and ''diem'' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for ''timegivers''). The predominant Zeitgeber for the central clock is light, which is sensed by retina(View all)Functional Description
Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots ''circa'' (about) and ''diem'' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for ''timegivers''). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndrome and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5''-CACGTG-3'') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. PER1 and PER2 proteins transport CRY1 and CRY2 into the nucleus with appropriate circadian timing, but also contribute directly to repression of clock-controlled target genes through interaction with several classes of RNA-binding proteins, helicases and others transcriptional repressors. PER appears to regulate circadian control of transcription by at least three different modes. First, interacts directly with the CLOCK-ARTNL/BMAL1 at the tail end of the nascent transcript peak to recruit complexes containing the SIN3-HDAC that remodel chromatin to repress transcription. Second, brings H3K9 methyltransferases such as SUV39H1 and SUV39H2 to the E-box elements of the circadian target genes, like PER2 itself or PER1. The recruitment of each repressive modifier to the DNA seems to be very precisely temporally orchestrated by the large PER complex, the deacetylases acting before than the methyltransferases. Additionally, large PER complexes are also recruited to the target genes 3'' termination site through interactions with RNA-binding proteins and helicases that may play a role in transcription termination to regulate transcription independently of CLOCK-ARTNL/BMAL1 interactions. Recruitment of large PER complexes to the elongating polymerase at PER and CRY termination sites inhibited SETX action, impeding RNA polymerase II release and thereby repressing transcriptional reinitiation. May propagate clock information to metabolic pathways via the interaction with nuclear receptors. Coactivator of PPARA and corepressor of NR1D1, binds rhythmically at the promoter of nuclear receptors target genes like ARNTL or G6PC. Directly and specifically represses PPARG proadipogenic activity by blocking PPARG recruitment to target promoters and thereby transcriptional activation. Required for fatty acid and lipid metabolism, is involved as well in the regulation of circulating insulin levels. Plays an important role in the maintenance of cardiovascular functions through the regulation of NO and vasodilatatory prostaglandins production in aortas. Controls circadian glutamate uptake in synaptic vesicles through the regulation of VGLUT1 expression. May also be involved in the regulation of inflammatory processes. Represses the CLOCK-ARNTL/BMAL1 induced transcription of BHLHE40/DEC1 and ATF4. Negatively regulates the formation of the TIMELESS-CRY1 complex by competing with TIMELESS for binding to CRY1. |
PTM Sites Count: 5 (View all)
|
|
Protein Sequence (Fasta) |
MNGYVDFSPS PTSPTQEPGE PQPTQAVLQE DVDMSSGSSG NENCSTGRDS QGSDCDDSGK 60 ELRMLVESSN THPSPDDTFR LMMTEAEHNP STSGCSSEQS AKADAHKELI RTLRELKVHL 120 PADKKAKGKA STLATLKYAL RSVKQVKANE EYYQLLMSSE SQPCSVDVPS YTMEQVEGIT 180 SEYIVKNSDM FAVAVSLVSG KILYISNQVA PIFHCKKDAF SDAKFVEFLA PHDVSVFHSY 240 TTPYKLPPWS VSSGLDSFTQ ECMEEKSFFC RVSVGKHHEN EIRYQPFRMT PYLVKVQEQK 300 GAASQLCCLL LAERVHSGYE APRIPPEKRI FTTTHTPNCL FQDVDERAVP LLGYLPQDLI 360 ETPVLVQLHP SDRPLMLAIH KKILQASGQP FDYSPIRFRT RNGEYITLDT SWSSFINPWS 420 RKISFIIGRH KVRVGPLNED VFAASPCPEE KTPHPSVQEL TEQIHRLLMQ PVPHSGSSGY 480 GSLGSNGSHE HLMSQTSSSD SNGQEESHWR RSGIFKTSGK SQSKSHFSPE SGGQKEASVA 540 EMQSSPPAQV RSVTTMERDS SGASLPKASF PEELTYKSQP PCSYQQISCL DSVIRYLESC 600 NEAATLKRKC EFPANIPSRK ATVSPGLHSG EAARSSKVTS HTEVSAHLSS LALPGKAESV 660 VSLTSQCSYS STIVHVGDKK PQPELETVED VASGPESQDD AAGGLSQEKG SLQKLGLTKE 720 VLAAHTQREE QGFLQRFREV SRLGALQAHC QNYLQERSRA PASDRGLRNA SGIESSWKKT 780 GKNRKLKSKR VKTRDSSEST GSGGPVSHRP PLVGLNATAW SPSDTSQSSC PSAPFPAPVP 840 AYPLPVFPAP GIVSTPGTVV APPAAAHTGF TMPVVPMGTQ PEFAVQPLPF AAPLAPVMAF 900 MLPSYPFPPA TPNLPQAFFP SQPHFPAHPT LASEITPASQ AEFPSRTSML RQPCACPVTP 960 PAGTVALGRA SPPLFQSRGS SPLQLNLLQL EEAPESSTGA AGTLGTTGTA ASGLDCTSGA 1020 SRDRQPKAPP TCSEPSDTQN SDAISTSSDL LNLLLGEDLC SATGSALSRS GASATSDSLG 1080 SSSLGCDTSR SGAGSSDTSH TSKYFGSIDS SENNHKAKMI TDTEESEQFI KYVLQDPIWL 1140 LMANTDDNIM MTYQLPSRDL QAVLKEDQEK LKLLQRSQPH FTEGQRRELR EVHPWVHTGG 1200 LPTAIDVTGC VYCESEEKGN LCLPYEEDSP SLGLCDTSEA KEEESGQLAN PRKEAQT 1257Fasta Sequence
>CGD-RaN-022186|Q9Z301|Period circadian protein homolog 2|Rattus norvegicus MNGYVDFSPSPTSPTQEPGEPQPTQAVLQEDVDMSSGSSGNENCSTGRDSQGSDCDDSGKELRMLVESSNTHPSPDDTFRLMMTEAEHNPSTSGCSSEQSAKADAHKELIRTLRELKVHLPADKKAKGKASTLATLKYALRSVKQVKANEEYYQLLMSSESQPCSVDVPSYTMEQVEGITSEYIVKNSDMFAVAVSLVSGKILYISNQVAPIFHCKKDAFSDAKFVEFLAPHDVSVFHSYTTPYKLPPWSVSSGLDSFTQECMEEKSFFCRVSVGKHHENEIRYQPFRMTPYLVKVQEQKGAASQLCCLLLAERVHSGYEAPRIPPEKRIFTTTHTPNCLFQDVDERAVPLLGYLPQDLIETPVLVQLHPSDRPLMLAIHKKILQASGQPFDYSPIRFRTRNGEYITLDTSWSSFINPWSRKISFIIGRHKVRVGPLNEDVFAASPCPEEKTPHPSVQELTEQIHRLLMQPVPHSGSSGYGSLGSNGSHEHLMSQTSSSDSNGQEESHWRRSGIFKTSGKSQSKSHFSPESGGQKEASVAEMQSSPPAQVRSVTTMERDSSGASLPKASFPEELTYKSQPPCSYQQISCLDSVIRYLESCNEAATLKRKCEFPANIPSRKATVSPGLHSGEAARSSKVTSHTEVSAHLSSLALPGKAESVVSLTSQCSYSSTIVHVGDKKPQPELETVEDVASGPESQDDAAGGLSQEKGSLQKLGLTKEVLAAHTQREEQGFLQRFREVSRLGALQAHCQNYLQERSRAPASDRGLRNASGIESSWKKTGKNRKLKSKRVKTRDSSESTGSGGPVSHRPPLVGLNATAWSPSDTSQSSCPSAPFPAPVPAYPLPVFPAPGIVSTPGTVVAPPAAAHTGFTMPVVPMGTQPEFAVQPLPFAAPLAPVMAFMLPSYPFPPATPNLPQAFFPSQPHFPAHPTLASEITPASQAEFPSRTSMLRQPCACPVTPPAGTVALGRASPPLFQSRGSSPLQLNLLQLEEAPESSTGAAGTLGTTGTAASGLDCTSGASRDRQPKAPPTCSEPSDTQNSDAISTSSDLLNLLLGEDLCSATGSALSRSGASATSDSLGSSSLGCDTSRSGAGSSDTSHTSKYFGSIDSSENNHKAKMITDTEESEQFIKYVLQDPIWLLMANTDDNIMMTYQLPSRDLQAVLKEDQEKLKLLQRSQPHFTEGQRRELREVHPWVHTGGLPTAIDVTGCVYCESEEKGNLCLPYEEDSPSLGLCDTSEAKEEESGQLANPRKEAQT
|
Nucleotide Sequence (Fasta) |
ATGAATGGAT ATGTGGACTT TTCCCCAAGT CCCACCAGCC CCACCCAAGA GCCAGGGGAG 60 CCTCAACCCA CCCAGGCTGT GCTCCAGGAA GACGTGGACA TGAGCAGCGG CTCCAGCGGA 120 AATGAAAACT GCTCCACGGG GCGGGACTCT CAGGGCAGTG ACTGTGACGA CAGTGGAAAG 180 GAGCTGCGGA TGTTAGTGGA ATCGTCCAAC ACTCACCCCA GCCCTGACGA TACCTTCAGA 240 CTCATGATGA CAGAGGCGGA GCATAACCCC TCCACAAGCG GCTGCAGTAG TGAGCAGTCT 300 GCCAAAGCTG ACGCACACAA AGAGCTGATA AGGACCCTGA GGGAGCTGAA GGTCCACCTC 360 CCTGCAGACA AGAAGGCCAA GGGGAAGGCC AGCACGCTGG CAACCTTGAA GTACGCTCTG 420 CGGAGCGTGA AGCAGGTGAA GGCTAATGAG GAGTACTACC AGCTGCTAAT GTCCAGTGAG 480 AGCCAGCCCT GCAGCGTGGA TGTGCCTTCC TACACCATGG AGCAGGTTGA GGGCATTACC 540 TCCGAGTATA TTGTGAAGAA CTCGGACATG TTTGCTGTGG CTGTGTCCCT GGTCTCTGGG 600 AAGATCCTGT ACATCTCCAA CCAAGTCGCC CCCATCTTTC ACTGTAAGAA GGACGCCTTC 660 AGTGATGCCA AGTTTGTGGA GTTCCTGGCT CCCCATGACG TCAGTGTGTT CCACAGCTAC 720 ACCACCCCTT ACAAGCTTCC GCCCTGGAGT GTGAGCAGTG GCTTAGATTC TTTCACTCAG 780 GAGTGCATGG AGGAGAAATC TTTTTTCTGC CGTGTCAGTG TTGGGAAACA CCACGAGAAT 840 GAGATTCGCT ACCAGCCCTT CCGCATGACA CCCTACCTGG TCAAGGTGCA AGAGCAGAAG 900 GGCGCTGCGA GCCAGCTCTG CTGCCTGCTG CTAGCAGAGA GGGTACACTC AGGCTATGAA 960 GCTCCTAGAA TTCCTCCCGA GAAGAGAATT TTCACAACAA CCCACACACC AAACTGCCTG 1020 TTCCAGGATG TGGACGAAAG GGCGGTCCCC CTCCTGGGCT ATCTACCTCA GGATCTGATC 1080 GAGACCCCTG TGCTCGTGCA GCTCCACCCC AGCGACCGGC CCTTGATGCT CGCCATCCAC 1140 AAGAAGATCC TACAGGCCAG TGGGCAGCCT TTCGATTATT CTCCCATTCG ATTCCGCACA 1200 CGCAACGGGG AGTACATCAC ACTGGACACT AGCTGGTCCA GCTTCATCAA CCCGTGGAGC 1260 AGGAAGATAT CCTTCATCAT CGGGAGGCAC AAAGTCAGGG TAGGCCCTTT GAATGAGGAT 1320 GTGTTCGCAG CCTCCCCTTG CCCAGAGGAG AAGACTCCGC ACCCCAGCGT TCAGGAGCTC 1380 ACAGAGCAAA TCCACCGGCT ACTGATGCAA CCTGTCCCCC ACAGCGGCTC CAGTGGCTAT 1440 GGGAGCCTGG GCAGTAACGG ATCCCACGAA CACCTCATGA GCCAGACATC ATCCAGCGAC 1500 AGCAATGGTC AAGAGGAGTC TCACTGGAGG AGATCCGGAA TTTTTAAAAC CAGTGGCAAG 1560 AGTCAAAGCA AAAGTCACTT TTCTCCTGAG TCTGGAGGAC AAAAGGAAGC CTCTGTTGCA 1620 GAAATGCAAA GTAGTCCTCC AGCTCAGGTG AGGTCTGTCA CCACCATGGA AAGGGACAGC 1680 TCGGGGGCCA GCCTACCCAA GGCTAGCTTT CCAGAGGAAC TAACCTATAA GAGCCAGCCT 1740 CCTTGCTCCT ACCAGCAGAT CAGCTGCCTG GACAGTGTCA TCAGGTACCT GGAGAGCTGC 1800 AACGAGGCAG CCACCCTGAA AAGAAAGTGC GAGTTCCCAG CCAACATCCC ATCCCGGAAG 1860 GCCACGGTCA GCCCTGGGCT GCACTCTGGA GAGGCAGCGC GGTCCTCCAA GGTGACCAGC 1920 CACACGGAGG TCAGTGCTCA CTTGAGCTCC TTGGCGTTGC CGGGCAAGGC CGAGAGTGTG 1980 GTGTCCCTCA CCAGCCAGTG CAGCTACAGC AGCACCATCG TGCACGTGGG CGACAAAAAG 2040 CCACAGCCTG AACTAGAGAC AGTAGAAGAT GTGGCCAGTG GGCCTGAGTC CCAGGATGAT 2100 GCAGCTGGTG GCCTCAGCCA AGAAAAGGGG TCTCTGCAGA AGCTAGGCCT CACCAAGGAA 2160 GTTCTGGCTG CACATACCCA GAGAGAGGAA CAGGGCTTCC TGCAGAGGTT CAGGGAAGTG 2220 AGCAGGCTCG GTGCCCTGCA GGCTCACTGC CAGAACTATC TCCAGGAGCG GTCCCGAGCC 2280 CCAGCAAGTG ATCGAGGACT AAGAAATGCT TCTGGAATAG AATCATCTTG GAAAAAAACT 2340 GGAAAGAACA GGAAACTGAA GTCCAAGCGT GTCAAGACTC GAGACTCTTC TGAGAGCACA 2400 GGGTCTGGGG GACCCGTGTC CCACCGACCT CCCCTCGTGG GCCTGAATGC CACAGCCTGG 2460 TCGCCCTCTG ACACATCCCA GTCTAGCTGT CCCTCTGCAC CATTCCCTGC TCCAGTGCCA 2520 GCTTACCCAC TACCTGTGTT CCCGGCACCT GGAATAGTAT CCACACCAGG GACGGTGGTG 2580 GCACCACCTG CAGCCGCCCA CACCGGCTTC ACCATGCCTG TTGTGCCTAT GGGCACCCAG 2640 CCTGAATTCG CAGTGCAGCC CCTGCCGTTC GCTGCCCCCT TGGCTCCGGT CATGGCCTTC 2700 ATGCTACCCA GCTACCCGTT TCCACCAGCA ACCCCAAACC TGCCTCAGGC CTTCTTCCCC 2760 AGCCAGCCTC ACTTTCCGGC CCATCCCACA CTTGCCTCTG AAATAACTCC TGCCTCCCAG 2820 GCTGAGTTCC CTAGTCGGAC CTCGATGCTC AGGCAGCCAT GTGCTTGCCC AGTCACCCCC 2880 CCGGCTGGCA CAGTGGCCTT GGGCAGAGCC TCCCCGCCAC TCTTCCAGTC CCGAGGCAGC 2940 AGTCCCCTAC AGCTTAACCT GCTTCAGCTA GAGGAAGCAC CTGAAAGTAG TACTGGAGCT 3000 GCAGGGACCT TGGGGACCAC GGGGACAGCA GCTTCTGGTC TGGACTGCAC ATCTGGCGCA 3060 TCTCGGGACC GGCAGCCAAA GGCACCTCCA ACATGCAGTG AGCCCTCAGA CACCCAGAAC 3120 AGTGATGCCA TCTCCACCTC CAGTGACCTG CTCAACCTCC TCCTGGGCGA GGACCTCTGC 3180 TCAGCCACCG GCTCAGCACT GTCGAGAAGC GGGGCATCTG CCACCTCAGA CTCACTGGGC 3240 TCCAGCTCCC TGGGCTGTGA CACATCCCGG AGTGGGGCAG GCAGCAGTGA TACAAGTCAC 3300 ACCAGCAAAT ACTTTGGAAG CATTGACTCT TCAGAGAATA ATCACAAAGC AAAAATGATC 3360 ACAGACACGG AGGAGAGTGA ACAGTTCATT AAGTACGTCT TGCAGGACCC CATCTGGCTG 3420 CTGATGGCCA ACACAGACGA CAATATCATG ATGACATACC AGCTGCCCTC CCGGGATCTC 3480 CAGGCGGTCT TGAAAGAGGA CCAGGAGAAG CTGAAGCTGC TGCAGAGGTC CCAGCCCCAC 3540 TTCACGGAGG GCCAGAGGCG AGAGCTTCGA GAGGTTCATC CGTGGGTCCA CACCGGGGGT 3600 CTGCCTACCG CCATCGACGT AACAGGGTGT GTTTACTGTG AAAGTGAGGA GAAAGGCAAC 3660 CTTTGTCTGC CATATGAGGA AGACAGTCCT TCCCTGGGAC TCTGTGATAC CTCAGAAGCC 3720 AAAGAGGAGG AGAGCGGACA GCTGGCCAAT CCTAGGAAGG AGGCCCAGAC GTAA 3774Fasta Sequence
>CGD-RaN-022186|BAA34187.1|Per2|Rattus norvegicus ATGAATGGATATGTGGACTTTTCCCCAAGTCCCACCAGCCCCACCCAAGAGCCAGGGGAGCCTCAACCCACCCAGGCTGTGCTCCAGGAAGACGTGGACATGAGCAGCGGCTCCAGCGGAAATGAAAACTGCTCCACGGGGCGGGACTCTCAGGGCAGTGACTGTGACGACAGTGGAAAGGAGCTGCGGATGTTAGTGGAATCGTCCAACACTCACCCCAGCCCTGACGATACCTTCAGACTCATGATGACAGAGGCGGAGCATAACCCCTCCACAAGCGGCTGCAGTAGTGAGCAGTCTGCCAAAGCTGACGCACACAAAGAGCTGATAAGGACCCTGAGGGAGCTGAAGGTCCACCTCCCTGCAGACAAGAAGGCCAAGGGGAAGGCCAGCACGCTGGCAACCTTGAAGTACGCTCTGCGGAGCGTGAAGCAGGTGAAGGCTAATGAGGAGTACTACCAGCTGCTAATGTCCAGTGAGAGCCAGCCCTGCAGCGTGGATGTGCCTTCCTACACCATGGAGCAGGTTGAGGGCATTACCTCCGAGTATATTGTGAAGAACTCGGACATGTTTGCTGTGGCTGTGTCCCTGGTCTCTGGGAAGATCCTGTACATCTCCAACCAAGTCGCCCCCATCTTTCACTGTAAGAAGGACGCCTTCAGTGATGCCAAGTTTGTGGAGTTCCTGGCTCCCCATGACGTCAGTGTGTTCCACAGCTACACCACCCCTTACAAGCTTCCGCCCTGGAGTGTGAGCAGTGGCTTAGATTCTTTCACTCAGGAGTGCATGGAGGAGAAATCTTTTTTCTGCCGTGTCAGTGTTGGGAAACACCACGAGAATGAGATTCGCTACCAGCCCTTCCGCATGACACCCTACCTGGTCAAGGTGCAAGAGCAGAAGGGCGCTGCGAGCCAGCTCTGCTGCCTGCTGCTAGCAGAGAGGGTACACTCAGGCTATGAAGCTCCTAGAATTCCTCCCGAGAAGAGAATTTTCACAACAACCCACACACCAAACTGCCTGTTCCAGGATGTGGACGAAAGGGCGGTCCCCCTCCTGGGCTATCTACCTCAGGATCTGATCGAGACCCCTGTGCTCGTGCAGCTCCACCCCAGCGACCGGCCCTTGATGCTCGCCATCCACAAGAAGATCCTACAGGCCAGTGGGCAGCCTTTCGATTATTCTCCCATTCGATTCCGCACACGCAACGGGGAGTACATCACACTGGACACTAGCTGGTCCAGCTTCATCAACCCGTGGAGCAGGAAGATATCCTTCATCATCGGGAGGCACAAAGTCAGGGTAGGCCCTTTGAATGAGGATGTGTTCGCAGCCTCCCCTTGCCCAGAGGAGAAGACTCCGCACCCCAGCGTTCAGGAGCTCACAGAGCAAATCCACCGGCTACTGATGCAACCTGTCCCCCACAGCGGCTCCAGTGGCTATGGGAGCCTGGGCAGTAACGGATCCCACGAACACCTCATGAGCCAGACATCATCCAGCGACAGCAATGGTCAAGAGGAGTCTCACTGGAGGAGATCCGGAATTTTTAAAACCAGTGGCAAGAGTCAAAGCAAAAGTCACTTTTCTCCTGAGTCTGGAGGACAAAAGGAAGCCTCTGTTGCAGAAATGCAAAGTAGTCCTCCAGCTCAGGTGAGGTCTGTCACCACCATGGAAAGGGACAGCTCGGGGGCCAGCCTACCCAAGGCTAGCTTTCCAGAGGAACTAACCTATAAGAGCCAGCCTCCTTGCTCCTACCAGCAGATCAGCTGCCTGGACAGTGTCATCAGGTACCTGGAGAGCTGCAACGAGGCAGCCACCCTGAAAAGAAAGTGCGAGTTCCCAGCCAACATCCCATCCCGGAAGGCCACGGTCAGCCCTGGGCTGCACTCTGGAGAGGCAGCGCGGTCCTCCAAGGTGACCAGCCACACGGAGGTCAGTGCTCACTTGAGCTCCTTGGCGTTGCCGGGCAAGGCCGAGAGTGTGGTGTCCCTCACCAGCCAGTGCAGCTACAGCAGCACCATCGTGCACGTGGGCGACAAAAAGCCACAGCCTGAACTAGAGACAGTAGAAGATGTGGCCAGTGGGCCTGAGTCCCAGGATGATGCAGCTGGTGGCCTCAGCCAAGAAAAGGGGTCTCTGCAGAAGCTAGGCCTCACCAAGGAAGTTCTGGCTGCACATACCCAGAGAGAGGAACAGGGCTTCCTGCAGAGGTTCAGGGAAGTGAGCAGGCTCGGTGCCCTGCAGGCTCACTGCCAGAACTATCTCCAGGAGCGGTCCCGAGCCCCAGCAAGTGATCGAGGACTAAGAAATGCTTCTGGAATAGAATCATCTTGGAAAAAAACTGGAAAGAACAGGAAACTGAAGTCCAAGCGTGTCAAGACTCGAGACTCTTCTGAGAGCACAGGGTCTGGGGGACCCGTGTCCCACCGACCTCCCCTCGTGGGCCTGAATGCCACAGCCTGGTCGCCCTCTGACACATCCCAGTCTAGCTGTCCCTCTGCACCATTCCCTGCTCCAGTGCCAGCTTACCCACTACCTGTGTTCCCGGCACCTGGAATAGTATCCACACCAGGGACGGTGGTGGCACCACCTGCAGCCGCCCACACCGGCTTCACCATGCCTGTTGTGCCTATGGGCACCCAGCCTGAATTCGCAGTGCAGCCCCTGCCGTTCGCTGCCCCCTTGGCTCCGGTCATGGCCTTCATGCTACCCAGCTACCCGTTTCCACCAGCAACCCCAAACCTGCCTCAGGCCTTCTTCCCCAGCCAGCCTCACTTTCCGGCCCATCCCACACTTGCCTCTGAAATAACTCCTGCCTCCCAGGCTGAGTTCCCTAGTCGGACCTCGATGCTCAGGCAGCCATGTGCTTGCCCAGTCACCCCCCCGGCTGGCACAGTGGCCTTGGGCAGAGCCTCCCCGCCACTCTTCCAGTCCCGAGGCAGCAGTCCCCTACAGCTTAACCTGCTTCAGCTAGAGGAAGCACCTGAAAGTAGTACTGGAGCTGCAGGGACCTTGGGGACCACGGGGACAGCAGCTTCTGGTCTGGACTGCACATCTGGCGCATCTCGGGACCGGCAGCCAAAGGCACCTCCAACATGCAGTGAGCCCTCAGACACCCAGAACAGTGATGCCATCTCCACCTCCAGTGACCTGCTCAACCTCCTCCTGGGCGAGGACCTCTGCTCAGCCACCGGCTCAGCACTGTCGAGAAGCGGGGCATCTGCCACCTCAGACTCACTGGGCTCCAGCTCCCTGGGCTGTGACACATCCCGGAGTGGGGCAGGCAGCAGTGATACAAGTCACACCAGCAAATACTTTGGAAGCATTGACTCTTCAGAGAATAATCACAAAGCAAAAATGATCACAGACACGGAGGAGAGTGAACAGTTCATTAAGTACGTCTTGCAGGACCCCATCTGGCTGCTGATGGCCAACACAGACGACAATATCATGATGACATACCAGCTGCCCTCCCGGGATCTCCAGGCGGTCTTGAAAGAGGACCAGGAGAAGCTGAAGCTGCTGCAGAGGTCCCAGCCCCACTTCACGGAGGGCCAGAGGCGAGAGCTTCGAGAGGTTCATCCGTGGGTCCACACCGGGGGTCTGCCTACCGCCATCGACGTAACAGGGTGTGTTTACTGTGAAAGTGAGGAGAAAGGCAACCTTTGTCTGCCATATGAGGAAGACAGTCCTTCCCTGGGACTCTGTGATACCTCAGAAGCCAAAGAGGAGGAGAGCGGACAGCTGGCCAATCCTAGGAAGGAGGCCCAGACGTAA
|
Sequence Source |
Uniprot/ENA |
Orthology |
|
Keyword |
KW-0007--Acetylation KW-0090--Biological rhythms KW-0181--Complete proteome KW-0963--Cytoplasm KW-0539--Nucleus KW-0597--Phosphoprotein KW-1185--Reference proteome KW-0677--Repeat KW-0804--Transcription KW-0805--Transcription regulation KW-0832--Ubl conjugation
|
Gene Ontology |
GO:0005737--C:cytoplasm GO:0005654--C:nucleoplasm GO:0005634--C:nucleus GO:0048471--C:perinuclear region of cytoplasm GO:0003713--F:transcription coactivator activity GO:0000989--F:transcription factor activity, transcription factor binding GO:0000976--F:transcription regulatory region sequence-specific DNA binding GO:0043130--F:ubiquitin binding GO:0032922--P:circadian regulation of gene expression GO:0097167--P:circadian regulation of translation GO:0007623--P:circadian rhythm GO:0006631--P:fatty acid metabolic process GO:0006094--P:gluconeogenesis GO:0005978--P:glycogen biosynthetic process GO:0070932--P:histone H3 deacetylation GO:0019249--P:lactate biosynthetic process GO:0042754--P:negative regulation of circadian rhythm GO:0070345--P:negative regulation of fat cell proliferation GO:0031397--P:negative regulation of protein ubiquitination GO:0000122--P:negative regulation of transcription from RNA polymerase II promoter GO:2000678--P:negative regulation of transcription regulatory region DNA binding GO:0045892--P:negative regulation of transcription, DNA-templated GO:0051726--P:regulation of cell cycle GO:0042752--P:regulation of circadian rhythm GO:0051946--P:regulation of glutamate uptake involved in transmission of nerve impulse GO:0050796--P:regulation of insulin secretion GO:0050767--P:regulation of neurogenesis GO:0019229--P:regulation of vasoconstriction GO:0002931--P:response to ischemia GO:0006351--P:transcription, DNA-templated GO:0050872--P:white fat cell differentiation
|
Interpro |
IPR000014--PAS IPR013655--PAS_fold_3 IPR022728--Period_circadian-like_C
|
PROSITE |
PS50112--PAS
|
Pfam |
PF08447--PAS_3 PF12114--Period_C
|
SMART |
SM00091--PAS
|